№ 2 (18) – 2022


завантаження O. Korkin



Cite in the List of bibliographic references (DSTU 8302:2015)

Коркін О. Ю. Стабілізація динамічних параметрів градієнтного процесу адаптації радіотехнічних систем з антенною решіткою в умовах активних шумових завад. Збірник наукових праць Військової академії (м. Одеса). 2022. № 2 (18). С. 78–89. https://doi.org/10.37129/2313-7509.2022.18.78-89


The article proposes an algorithm for parametric adaptation of radiotechnikal systems (RTS) with an adaptive antenna array (AAR) with stable dynamic parameters (DP) operating under conditions of active noise interference (ANI).
When applying gradient methods, not only the convergence of successive approximations is essential, but also their speed, which can vary significantly depending on the existing signal-interference situation. The problem of choosing the convergence step of gradient methods is non-trivial due to the lack of a priori information about the target function which is minimized (maximized). A fixed adaptation step does not guarantee stable convergence and stability of the adaptation process.
It is proposed to replace the constant constant of the adaptation step with a variable whose elements depend on the contrast of the spectral distribution of the correlation matrix of observation, and to increase the speed of convergence of these processes, to apply the second-order gradient method.
As a result of the synthesis, a generalized analytical form of the quasi-Newton algorithm for an arbitrary step of adaptation for adaptive RTS with an antenna array was obtained. Quasi-Newtonian algorithms for stabilizing the dynamic parameters of the adaptation process of the adaptive interference compensator (AIC) and AAR have been synthesized, which are the best among the algorithms of approximate calculations.
The use of these algorithms is advisable in the case of limited computing resources. The conducted study of the efficiency of the quasi-Newtonian algorithm of parametric adaptation for AIC and AAR according to the signal/(interference+noise) ratio criterion, which is achieved at the RTS output, maintains its stability in any of the considered situations, regardless of the influence of arbitrary intensity ANI.


adaptation, adaptive antenna array, adaptive interference compensator, interference, signal/(interference+noise), quasi-Newton, gradient method.

List of bibliographic references

  1. Аббасов М. Э. Методы оптимизации : учеб. пособие. СПб.: Издательство “ВВМ”, 2014. 64 с.
  2. Джиган В. И. Адаптивная фильтрация сигналов: теория и алгоритмы. Москва : Техносфера, 2013. 528 с.
  3. Уидроу Б., Стирнз С. Адаптивная обработка сигналов: Пер. с англ. Москва: Радио и связь, 1989. 440 с.
  4. Balanis C. A., Ioannides P. I. Introduction to Smart Antennas. Synthesis Lectures on Antennas. 2007. Vol. 2, no. 1. P. 1–175. URL: https://doi.org/10.2200/s00079ed1v01y200612ant005.
  5. Robert A. Monzingo, Randy L. Haupt, Thomas W. Miller Introduction to Adaptive Arrays, 2nd ed. Scitech Pub., Inc., 2011. 510 p.
  6. Фадеев, Д. К. Вычислительные методы линейной алгебры: изд. 2, доп./ Д. К. Фадеев, В. Н. Фадеева. М.: Гос. изд-во «ФИЗМАТГИЗ», 1963.736 с.


  1. Abbasov, M. E. (2014). Optimization methods. VVM Publishing House. [in Russian].
  2. Dzhigan, V. I. (2013). Adaptivnaya filtratsiya signalov teoriya i algoritmyi. Tehnosfera Publ. [in Russian].
  3. Uidrou, B., & Stirnz, S. (1989). Adaptive Signal Processing. Radio i svyazPubl. [in Russian].
  4. Balanis, C. A., & Ioannides, P. I. (2007). Introduction to Smart Antennas. Synthesis Lectures on Antennas, 2(1), 1–175. https://doi.org/10.2200/s00079ed1v01y200612ant005.
  5. Monzingo, Robert A., Haupt, Randy L. & Miller, Thomas W. (2011). Introduction to Adaptive Arrays, 2nd ed. Scitech Pub.
  6. Fadeev, D. K., & Fadeeva, V. N. (1963). Computational methods of linear algebra. (2 ed.). FIZMATGIZPubl. [in Russian].
Copyright 2014 18.78-89 (eng) А. Розроблено ІОЦ ВА
Templates Joomla 1.7 by Wordpress themes free